3.431 \(\int (g x)^m (d+e x)^2 (a+c x^2)^p \, dx\)

Optimal. Leaf size=205 \[ -\frac{(g x)^{m+1} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (a e^2 (m+1)-c d^2 (m+2 p+3)\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )}{c g (m+1) (m+2 p+3)}+\frac{2 d e (g x)^{m+2} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};-\frac{c x^2}{a}\right )}{g^2 (m+2)}+\frac{e^2 (g x)^{m+1} \left (a+c x^2\right )^{p+1}}{c g (m+2 p+3)} \]

[Out]

(e^2*(g*x)^(1 + m)*(a + c*x^2)^(1 + p))/(c*g*(3 + m + 2*p)) - ((a*e^2*(1 + m) - c*d^2*(3 + m + 2*p))*(g*x)^(1
+ m)*(a + c*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((c*x^2)/a)])/(c*g*(1 + m)*(3 + m + 2*p)*(1 +
(c*x^2)/a)^p) + (2*d*e*(g*x)^(2 + m)*(a + c*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, -((c*x^2)/a)])/
(g^2*(2 + m)*(1 + (c*x^2)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.196665, antiderivative size = 194, normalized size of antiderivative = 0.95, number of steps used = 6, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {1809, 808, 365, 364} \[ \frac{(g x)^{m+1} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (\frac{d^2}{m+1}-\frac{a e^2}{c (m+2 p+3)}\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )}{g}+\frac{2 d e (g x)^{m+2} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};-\frac{c x^2}{a}\right )}{g^2 (m+2)}+\frac{e^2 (g x)^{m+1} \left (a+c x^2\right )^{p+1}}{c g (m+2 p+3)} \]

Antiderivative was successfully verified.

[In]

Int[(g*x)^m*(d + e*x)^2*(a + c*x^2)^p,x]

[Out]

(e^2*(g*x)^(1 + m)*(a + c*x^2)^(1 + p))/(c*g*(3 + m + 2*p)) + ((d^2/(1 + m) - (a*e^2)/(c*(3 + m + 2*p)))*(g*x)
^(1 + m)*(a + c*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((c*x^2)/a)])/(g*(1 + (c*x^2)/a)^p) + (2*d
*e*(g*x)^(2 + m)*(a + c*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, -((c*x^2)/a)])/(g^2*(2 + m)*(1 + (c
*x^2)/a)^p)

Rule 1809

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[(f*(c*x)^(m + q - 1)*(a + b*x^2)^(p + 1))/(b*c^(q - 1)*(m + q + 2*p + 1)), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (g x)^m (d+e x)^2 \left (a+c x^2\right )^p \, dx &=\frac{e^2 (g x)^{1+m} \left (a+c x^2\right )^{1+p}}{c g (3+m+2 p)}+\frac{\int (g x)^m \left (-a e^2 (1+m)+c d^2 (3+m+2 p)+2 c d e (3+m+2 p) x\right ) \left (a+c x^2\right )^p \, dx}{c (3+m+2 p)}\\ &=\frac{e^2 (g x)^{1+m} \left (a+c x^2\right )^{1+p}}{c g (3+m+2 p)}+\frac{(2 d e) \int (g x)^{1+m} \left (a+c x^2\right )^p \, dx}{g}+\left (d^2-\frac{a e^2 (1+m)}{c (3+m+2 p)}\right ) \int (g x)^m \left (a+c x^2\right )^p \, dx\\ &=\frac{e^2 (g x)^{1+m} \left (a+c x^2\right )^{1+p}}{c g (3+m+2 p)}+\frac{\left (2 d e \left (a+c x^2\right )^p \left (1+\frac{c x^2}{a}\right )^{-p}\right ) \int (g x)^{1+m} \left (1+\frac{c x^2}{a}\right )^p \, dx}{g}+\left (\left (d^2-\frac{a e^2 (1+m)}{c (3+m+2 p)}\right ) \left (a+c x^2\right )^p \left (1+\frac{c x^2}{a}\right )^{-p}\right ) \int (g x)^m \left (1+\frac{c x^2}{a}\right )^p \, dx\\ &=\frac{e^2 (g x)^{1+m} \left (a+c x^2\right )^{1+p}}{c g (3+m+2 p)}+\frac{\left (d^2-\frac{a e^2 (1+m)}{c (3+m+2 p)}\right ) (g x)^{1+m} \left (a+c x^2\right )^p \left (1+\frac{c x^2}{a}\right )^{-p} \, _2F_1\left (\frac{1+m}{2},-p;\frac{3+m}{2};-\frac{c x^2}{a}\right )}{g (1+m)}+\frac{2 d e (g x)^{2+m} \left (a+c x^2\right )^p \left (1+\frac{c x^2}{a}\right )^{-p} \, _2F_1\left (\frac{2+m}{2},-p;\frac{4+m}{2};-\frac{c x^2}{a}\right )}{g^2 (2+m)}\\ \end{align*}

Mathematica [A]  time = 0.117482, size = 158, normalized size = 0.77 \[ \frac{x (g x)^m \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (d^2 \left (m^2+5 m+6\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )+e (m+1) x \left (2 d (m+3) \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};-\frac{c x^2}{a}\right )+e (m+2) x \, _2F_1\left (\frac{m+3}{2},-p;\frac{m+5}{2};-\frac{c x^2}{a}\right )\right )\right )}{(m+1) (m+2) (m+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*x)^m*(d + e*x)^2*(a + c*x^2)^p,x]

[Out]

(x*(g*x)^m*(a + c*x^2)^p*(d^2*(6 + 5*m + m^2)*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((c*x^2)/a)] + e*(1
 + m)*x*(2*d*(3 + m)*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, -((c*x^2)/a)] + e*(2 + m)*x*Hypergeometric2F1
[(3 + m)/2, -p, (5 + m)/2, -((c*x^2)/a)])))/((1 + m)*(2 + m)*(3 + m)*(1 + (c*x^2)/a)^p)

________________________________________________________________________________________

Maple [F]  time = 0.548, size = 0, normalized size = 0. \begin{align*} \int \left ( gx \right ) ^{m} \left ( ex+d \right ) ^{2} \left ( c{x}^{2}+a \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)^2*(c*x^2+a)^p,x)

[Out]

int((g*x)^m*(e*x+d)^2*(c*x^2+a)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{2}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(c*x^2+a)^p,x, algorithm="maxima")

[Out]

integrate((e*x + d)^2*(c*x^2 + a)^p*(g*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(c*x^2+a)^p,x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*(c*x^2 + a)^p*(g*x)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)**2*(c*x**2+a)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{2}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(c*x^2+a)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^2*(c*x^2 + a)^p*(g*x)^m, x)